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Abstract. In this paper, we study the existence of strong and weak solutions of the generalized
vector equilibrium problems for trifunctions. Two special classes of vector-valued trifunctions are
introdcued, called the classes of (SPM) and (GPM), respectively. Some existence results for strong
solutions associated to functions of these classes are given.
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1. Introduction

Let 2X denote the family of all subsets of a nonempty set X. For two topological
spaces X and Y , a function from X into 2Y will be called a multi-valued mapping
of X into Y .
Let X and Y be real topological vector spaces, T be a multi-valued mapping of a

set K⊂X into a set D⊂Y , and let f �K×D×K−→� be a real trifunction. The
generalized equilibrium problem associated with �f 	T 	K	D
 consists of finding

x̂∈K and ŷ∈T�x̂
 such that f �x̂	ŷ	u
�0 for all u∈K.

Generalized equilibrium problems subsume in particular optimization prob-
lems, equilibrium problems (Bianchi and Schaible,1996; Blum and Oettli, 1994;
Chadli et al., 2000; Hadjisavvas and Schaible, 1996) and generalized variational
inequalities. For instance, by considering the multi-valued mapping T of K into
the topological dual X∗ of X, and the trifunction f �x	y	u
=�y	u−x	 for
�x	y	u
∈K×X∗×K, the above generalized equilibrium problem becomes a
generalized variational inequality which is to find

x̂∈K and ŷ∈T�x̂
 such that �ŷ	u− x̂	�0 for all u∈K.

Generalized vector equilibrium problems, (GVEP for short), are obtained from
generalized equilibrium problems by considering trifunctions of K×D×K into a
real topological vector space � with an ordering cone. By an ordering cone C⊂�
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we mean that C is a closed convex cone in � with IntC 
=∅ and C 
=�, where
IntC denotes the interior of C.
Let K, D and T be given as above, and let f �K×D×K−→� be a

trifunction. The problem (GVEP) is to find a pair �x̂	ŷ
∈K×T�x̂
 such that

f �x̂	ŷ	u
∈�−IntC
c for all u∈K,

where �−IntC
c is the complement of−IntC in�. Such an x̂will be called a strong
solution of the problem (GVEP) in the sense that ŷ does not depend on u∈K.
While an x̂∈K is called a weak solution of the problem (GVEP) if for every
u∈K there exists ŷ∈T�x̂
 (depending on u) such that f �x̂	ŷ	u
∈�−IntC
c.
Similar to generalized variational inequalities, generalized vector variational in-

equalities are obtained from the problems (GVEP) by considering the multi-valued
mappings of K into the space L�X	�
 of all continuous linear mappings from X
into �. More precisely, let T be a multi-valued mapping of K into L�X	�
. The
generalized vector variational inequality associated with �T 	K
 is to find

x̂∈K and ŷ∈T�x̂
 such that �ŷ	u− x̂	∈�−IntC
c for all u∈K.

Existence of weak solutions of generalized vector variational inequalities was
investigated by many authors. See for instances Ansari (1999), Chen and Craven
(1990), Lee et al. (1997) and Lin et al. (1997). Very few papers have appeared in
the literature on the existence of strong solutions of generalized vector variational
inequalities, which are included as a particular case of our general problem (GVEP)
(seeKonnov andYao, 1997;Hadjisavvas and Schaible, 1998;Ansari andYao, 1999
a,b).
In this paper, we shall establish some existence results for weak and strong solu-

tions of the problem (GVEP) associated with trifunctions which satisfy some prop-
erties that extend naturally to the vector framework of some well known concepts
in nonlinear analysis. The rest of the paper is organized as follows.
In Section 2, we recall some terminology and some preliminary results that we

shall need in the sequels. A generalized Fan-KKM theorem due to Shioji (1991,
Theorem 3) is stated, and a brief discussion on a scalarization procedure due to
Oettli (1997) is given.
In Section 3, we consider the problem (GVEP) associated with trifunctions

which satisfy some properties that extend naturally to the vector framework of
some well known concepts in nonlinear analysis, and prove our main existence
results (Theorems 3.1–3.3) by use of Shioji’s generalized Fan-KKM Theorem and
Oettli’s scalarization procedure. Theorems 3.1 and 3.3 are existence results for
strong solutions, and Theorem 3.2 is for weak solutions.
In the final section, we introduce two classes of trifunctions which will be called

the classes of (SPM) and (GPM), respectively. These two classes of trifunctions
are vector-valued, and generalize the notion of topological pseudomonotonicity for
real valued functions due to Brézis and Browder. Also, by using the main results
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obtained in Section 3, we prove some existence results for strong solutions of the
problem (GVEP) associated with trifunctions of the above two classes.
We shall use the following notation. For any subset A of a topological space X,

let Ac denote the complement of A in X, and let A denote the closure of A in X. If
X is a topological vector space, we denote by co�A
 the convex hull of A.

2. Preliminaries

In this section, we start with the definition of upper semicontinuous multi-valued
mappings due to Berge (1963).
A multi-valued mapping T of a topological space X into another Y is called

upper semicontinuous at x∈X if for every open set V containing T�x
, there is
an open set U containing x such that T�u
⊂V for all u∈U . While T is called
upper semicontinuous on X if T is upper semicontinuous at every x∈X, and if
T�x
 is compact for every x∈X.
We remark that in the rest of this paper any multi-valued mapping which is

upper semicontinuous on its domain always assumes compact values.

THEOREM 2.1. (Berge, 1963, pp. 109–112). Let X and Y be two topological
spaces, and let T be a multi-valued mapping of X into Y . If T is upper semicon-
tinuous, then

(i) T is closed, that is, the graph ��x	y
∈X×Y �y∈T�x
� of T is closed
in X×Y , and

(ii) for every compact set K⊂X, the set T�K
=⋃
x∈K

T�x
 is compact in Y .

Next, we consider functions of a topological space into an ordered real to-
pological vector space. Throughout this section and the sequels, let � be a real
topological vector space with an ordering cone C, (see Section 1).
A function f of a topological space X into � is called C-upper semicontinuous

if for every z∈� the set f−1�z−IntC
 is open in X, (see Tanaka, 1997). Tanaka
proved in that a function f of a topological space X into � is C-upper semicon-
tinuous if and only if for every x∈X and for every w∈ IntC, there is an open
neighborhood U =U�x
 of x such that f �u
∈f �x
+w−IntC for all u∈U .
By a standard argument, we can prove easily the following proposition, and

hence the proof will be omitted.

PROPOSITION 2.2. Let X be a Hausdorff topological space, and let f be a func-
tion of X into �. Then f is C-upper semicontinuous on X if and only if for every
x∈X, for every w∈ IntC, and for any net �x���∈I in X converging to x, there is
an �0∈ I such that

�f �x�
 �����⊂f �x
+w−IntC for all ���0.
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Let K be a nonempty convex subset of a real topological vector space X.

(i) A function ��K−→� is called C-convex if

t��x
+�1−t
��x′
−��tx+�1−t
x′
∈ IntC∪�0�

whenever x, x′ ∈K and 0� t�1. Moreover, � is called C-concave if −� is
C-convex.

(ii) A bifunction h�K×K−→� is called C-quasiconvex-like, (see Ansari and
Yao, 1999), if

h�x	ty1+�1−t
y2
∈h�x	y1
−C or h�x	ty1+�1−t
y2
∈h�x	y2
−C

for all x, y1, y2∈K and for 0� t�1.

(iii) A bifunction h�K×K−→� is called vector 0-diagonally convex, (see
Chadli et al., 2002), if for any finite set �y1	���	yn�⊂K,

n∑
j=1

tjh�x	yj
∈�−IntC
c

whenever x=
n∑

j=1

tjyj with tj �0 for all j and
n∑

j=1

tj =1.

(iv) Let T �K−→2D be a multi-valued mapping. A trifunction f �K×D×
K−→� is called vector 0-diagonally convex with respect to T if for any

finite set �x1	���	xn�⊂K and for any x=
n∑

j=1

tjxj with tj �0 and
n∑

j=1

tj =

1, there exists y∈T�x
 such that
n∑

i=1

tjf �x	y	xj
∈�−IntC
c.

REMARK 2.1. Let K, D and T be given as above.

(i) If h�K×K−→� is a vector 0-diagonally convex bifunction, then
h�x	x
∈�−IntC
c for every x∈K since �x� is a convex subset of K.

(ii) Let f �K×D×K−→� be a trifunction such that for every x∈K there
exists yx∈T�x
 satisfying f �x	yx	x
=0. If for every fixed �x	y
∈K×D,
the function u �−→f �x	y	u
 is C-convex, then f is vector 0-diagonally
convex with respect to T .

By a convexity argument, we obtain the following proposition easily.



GENERALIZED VECTOR EQUILIBRIUM PROBLEMS WITH TRIFUNCTIONS 139

PROPOSITION 2.3. Let K be a nonempty convex subset of a Hausdorff real to-
pological vector space, let h�K×K−→� be a bifunction, and let E be any
nonempty finite subset of K.

(i) If h is C-quasiconvex-like, and if there exists ŷ∈co�E
 such that h�x	ŷ
∈
�−IntC
c, then h�x	y
∈�−IntC
c for some y∈E.

(ii) If h is vector 0-diagonally convex, and if x∈co�E
, then h�x	y
∈
�−IntC
c for some y∈E.

Finally, we shall state Shioji’s generalized Fan-KKM theorem (Shioji, 1991,
Theorem 3), and give a brief discussion on Oettli’s scalarization procedure.
Let K be a nonempty convex subset of a topological vector space X, and let

G and H be two multi-valued mappings from K into a topological space Y . The
mapping G is called an H -KKM mapping if

H�co�E

⊂⋃
x∈E

G�x


for every nonempty finite set E⊂K.

THEOREM 2.4. (Shioji) Let K be a nonempty compact and convex subset of a
topological vector space X, and let G and H be two multi-valued mappings from
K into a topological vector space Y . If

(i) H is upper semicontinuous and H�x
 is nonempty and convex for every
x∈K;

(ii) G is an H -KKM mapping and G�x
 is closed for every x∈K,

then
⋂
x∈K

g�x
 
=∅.

Let �∗ be the topological dual of �. The set

C∗=�z∗ ∈�∗ ��z∗	z	�0 for all z∈C�

is the polar cone of C. Note that C∗ has a weak ∗ compact base B, i.e., B⊂C∗

is convex and weak∗ compact with 0�B and C∗=⋃
t>0

tB, (see Luc, 1989). Let

( ��−→� be defined by

(�z
=max
)∈B

�)	z	 for z∈�.

Then ( is sublinear, hence convex and lower semicontinuous. Also, for z∈�, we
have

z∈�−IntC
c⇐⇒(�z
�0� (See, e.g., Oettli, 1997)
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PROPOSITION 2.5. Let f be a function from a real Hausdorff topological vector
space X into �, and let g �X−→� be defined by g�x
=(�f �x

 for x∈X.

(i) If f is C-upper semicontinuous on X, then g is upper semicontinuous.
(ii) If f is C-convex (respectively, C-concave), then g is convex (respectively,

concave).
Proof. The statement (ii) follows immediately from the definition. The statement

(i) is proved as follows.
Since f is C-upper semicontinuous on X, then by Proposition 2.1, for each

w∈ IntC and for any net �x���∈I in X converging to x there exists an �0∈ I such
that

�f �x�
 �����⊂f �x
+w−IntC for all ���0.

Choose an arbitrary net �wj�j∈J in IntC with wj →0. For each j∈J , there is an
�0�j
∈ I such that

f �x�
−f �x
−wj ∈�−IntC
 for all ���0�j
.

Then, for all ���0�j
, we have (�f �x�
−f �x
−wj
<0 and

g�x�
=(�f �x�

�(�f �x

+(�wj
=g�x
+(�wj
�

This implies that limsup
�

g�x�
�g�x
 since wj →0. The proof is complete.

PROPOSITION 2.6. (Blum and Oettli, 1994, Lemma 1). Let X and Y be two
real Hausdorff topological vector spaces, let K⊂X be convex and compact, and
let D⊂Y be convex. Let p �K×D−→� be a bifunction. Assume that

(i) for every y∈D, the function x �−→p�x	y
 is concave and upper semi-
continuous, and

(ii) for every x∈K, the function y �−→p�x	y
 is convex.

If max
x∈K

p�x	y
�0 for all y∈D, then there exists x̂∈K such that p�x̂	y
�0

for all y∈D.

3. Existence Results

In this section, we state and prove our main existence results for the problem
(GVEP). The first result is obtained by using Shioji’s Fan-KKM Theorem.

THEOREM 3.1. Let X and Y be two real Hausdorff topological vector spaces,
let D⊂Y be nonempty and closed, and let K⊂X be nonempty convex. Let
T �K−→2D be a multi-valued mapping, and let f �K×D×K−→� be a
trifunction. Assume that the following conditions are satisfied.
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(i) f �x	y	x
∈�−IntC
c for all x∈K and y∈T�x
.

(ii) T is upper semicontinuous, and T�x
 is nonempty and convex for every
x∈K.

(iii) For every y∈D, the bifunction �x	u
 �−→f �x	y	u
 is C-quasiconvex-
like (or vector 0-diagonally convex) on K×K.

(iv) For every u∈K, the bifunction �x	y
 �−→f �x	y	u
 is C-upper semi-
continuous on co�E
×D for every nonempty finite set E⊂K.

(v) For any u∈K and for any net ��x�	y�
� in K×D converging to �x	y
∈
K×D, if

f �x�	y�	tu+�1−t
x
∈�−IntC
c

for all � and for 0� t�1, then f �x	y	u
∈�−IntC
c.

(vi) (Coercivity) There is a nonempty compact set K0⊂K, and there is a
nonempty compact convex set K1⊂K such that

x∈K∩Kc
0 �⇒f �x	y	ux
∈−IntC for some ux∈K1 and for all y∈T�x
.

Then there is a pair �x̂	ŷ
∈K×T x̂
 such that f �x̂	ŷ	u
∈�−IntC
c for all
u∈K.

REMARK 3.1. In Theorem 3.1,

(i) if for every y∈D the bifunction �x	u
 �−→f �x	y	u
 is vector 0-
diagonally convex on K×K, then condition (i) is redundant, (cf. Remark
2.1 (i));

(ii) if K is compact, the coercivity condition (vi) can be deleted.

We start the proof of Theorem 3.1 by showing that the following lemma holds.

LEMMA 3.1. Let K⊂X, D⊂Y , T and f be given as in Theorem 3.1. If E is
any nonempty finite subset of K, then there exist x̂∈co�E
 and ŷ∈T�x̂
 such
that f �x̂	ŷ	u
∈�−IntC
c for all u∈co�E
.
Proof. Let G�co�E
−→2co�E
×2D and H �co�E
−→2co�E
×2D be

multi-valued mappings defined by

G�u
=��x	y
∈co�E
×T�x
 �f �x	y	u
∈�−IntC
c� and H�x
=�x�×T�x
�

Note that by condition (ii), H is upper semicontinuous, and H�x
 is convex and
compact for every x∈co�E
.
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We shall prove that G is an H -KKM mapping, and that G�u
 is closed in X×Y
for every u∈co�E
. By Theorem 2.2, we then conclude

⋂
u∈co�E


g�u
 
=∅. This
completes the proof.

For every u∈K, let fu �K×D−→� be defined by

fu�x	y
=f �x	y	u
 for �x	y
∈K×D.

Since fu is C-upper semicontinuous on co�E
×D, and sinceH�co�E

 is compact
in X×D, for every u∈co�E
, the set

G�u
=H�co�E

∩f−1
u �−IntC
c

is closed in H�co�E

, and hence it is closed in X×Y since D is closed in Y .

Finally, we prove thatG is anH -KKMmapping. For any nonempty finite subset
A of co�E
, let x∈co�A
 and y∈T�x
. Since f �x	y	x
∈�−IntC
c, by condi-
tion (iii) and Proposition 2.2, there exists u∈A such that f �x	y	u
∈�−IntC
c.
This proves that �x	y
∈ G�u
, and that H�co�A

⊂⋃

u∈A

g�u
. Therefore, G is

an H -KKM mapping.

Proof of Theorem 3.1. We first prove the theorem for the case where K is
compact. Let � be the family of all nonempty finite subsets of K, and for every
E∈� let

ME =��x	y
∈K×T�x
 �f �x	y	u
∈�−IntC
c for all u∈co�E
��

It follows from Lemma 3.1 that every ME is nonempty.

We claim that
⋂
E∈�

ME 
=∅. Note that T�K
 is compact by Theorem 2.1 (ii).

By definition, one proves easily that

E	F ∈� �⇒ME∪F ⊂ME∩MF and ME∪F ⊂ME∩MF �

This implies that the family �ME �E∈� � possesses the finite intersection
property. Since ME ⊂K×T�K
, and since K×T�K
 is compact, the claim
is valid.

Let �x̂	ŷ
∈ ⋂
E∈�

ME . We shall prove that ŷ∈T�x̂
 and f �x̂	ŷ	u
∈�−IntC
c

for all u∈K. For every fixed u∈K, we consider the set Eu=�x̂	u�⊂K. Since
�x̂	ŷ
∈MEu

, there is a net ��x�	y�
� in MEu
such that lim

�
�x�	y�
=�x̂	ŷ
. Note

that ŷ∈T�x̂
 since T is closed. By the definition of �x�	y�
, we have

f �x�	y�	tu+�1−t
x̂
∈�−IntC
c for all � and for 0� t�1.
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It follows immedately from condition (v) that f �x̂	ŷ	u
∈�−IntC
c. Therefore,
the theorem holds when K is compact.

Now, we complete the proof as follows. For every E∈� , let

NE =��x	y
∈K0×T�x
 �f �x	y	u
∈�−IntC
c for all u∈co�K1∪E
��

Note that co�K1∪E
 is compact for every E∈� (see Aliprantis and Border,
1994, Lemma 4.12, p. 126). From previous discussion, there is a pair �xE	yE
∈
co�K1∪E
×T�xE
 such that f �xE	yE	u
∈�−IntC
c for all u∈co�K1∪E
.
Since K1⊂co�K1∪E
, xE ∈K0 by condition (vi). This proves that NE 
=∅ for
every E∈� .
By the compactness of K0×T�K0
, and the same argument as above, we obtain⋂

E∈�
NE 
=∅. Let �x̂	ŷ
∈ ⋂

E∈�
NE . We claim that �x̂	ŷ
 is a required solution.

For any fixed u∈K, let Eu=�x̂	u�. Since �x̂	ŷ
∈NEu
, there is a net

��x�	y�
� in NEu
converging to �x̂	ŷ
. Since co�Eu
⊂co�K1∪Eu
,

f �x�	y�	)u+�1−)
x̂
∈�−IntC
c for all � and for 0�)�1.

It follows from condition (v) that f �x̂	ŷ	u
∈�−IntC
c.
Next, we use Oettli’s scalarization procedure to derive two existence results for

the problem (GVEP), stated as Theorem 3.2 for weak solutions and Theorem 3.3
for strong solutions, respectively.

THEOREM 3.2. Let X and Y be real Hausdorff topological vector spaces, let
D⊂Y be nonempty, and let K⊂X be nonempty and convex. Let T �K−→2D

be a multi-valued mapping, and let f �K×D×K−→� be a trifunction. Assume
that the following conditions are satisfied.

(i) T is upper semicontinuous, and T�x
 is nonempty convex for every
x∈K.

(ii) For every x∈K, there exists y∈T�x
 such that f �x	y	x
=0.

(iii) For each �x	y
∈K×D, the function u �−→f �x	y	u
 is C-convex.

(iv) For each fixed u∈K, the bifunction �x	y
 �−→f �x	y	u
 is C-upper
semicontinuous on K×D.

(v) For each �x	u
∈K×K, the function y �−→f �x	y	u
 is C-concave.

(vi) For every u∈K and any net ��x�	y�
��∈I in K×D with y�∈T�x�
,
x�→x∈K, and

f �x�	y�	tu+�1−t
x
∈�−IntC
c for all �∈ I and 0� t�1,
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there exists yu∈T�x
 such that f �x	yu	u
∈�−IntC
c.

(vii) There is a nonempty compact set K0⊂K, and there is a nonempty com-
pact convex set K1⊂K such that if x∈K∩Kc

0 , then f �x	y	ux
∈�−IntC

for some ux∈K1 and for all y∈T�x
.

Then there exists x̂∈K such that for every fixed u∈K there exists ŷu∈T�x̂

satisfying f �x̂	ŷu	u
∈�−IntC
c.

THEOREM 3.3. Let K⊂X, D⊂Y , T and f be given in Theorem 3.2. If, in
addition,

(viii) for each �x	u
∈K×K, the function y �−→f �x	y	u
 is C-upper
semicontinuous,

then there exists �x̂	ŷ
∈K×T�x̂
 such that f �x̂	ŷ	u
∈�−IntC
c for all u∈K.

To derive Theorem 3.2 and 3.3, we first establish Lemma 3.2 and 3.3.

LEMMA 3.2. Let X and Y be real Hausdorff topological vector spaces, let K⊂
X be nonempty and convex, and let D⊂Y be nonempty. Let T �K−→2D be an
upper semicontinuous multi-valued mapping, and let f �K×D×K−→� be a
trifunction. Let E be any nonempty finite subset of K. If

(i) f is vector 0-diagonally convex with respect to T , and
(ii) for every fixed u∈K, the bifunction �x	y
 �−→f �x	y	u
 is C-upper

semicontinuous on co�E
×D,

then there is an x̂∈co�E
 such that for every fixed u∈co�E
 there exists yu∈
T�x̂
 with f �x̂	yu	u
∈�−IntC
c.
Proof. For every u∈co�E
, let

S�u
=�x∈co�E
 �f �x	y	u
∈�−IntC
c for some y∈T�x
��

We prove that
⋂

u∈co�E


S�u
 
=∅ by using the Ky Fan Lemma (Fan, 1961). This

completes the proof.

It follows from (i) that u∈S�u
 for every u∈co�E
. Thus S�u
 is nonempty
for every u∈co�E
. To apply the Ky Fan Lemma, we have to show that every
S�u
 is closed. Consequently, every S�u
 is compact.
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Let �x�� be any net in S�u
 converging to x. We prove that x∈S�u
. For each
�, there exists y�∈T�x�
 such that f �x�	y�	u
∈�−IntC
c. Since co�E
 is com-
pact, and since T is upper semicontinuous onK, T�co�E

 is compact, and without
loss of generality, we can assume that y�→y∈T�co�E

. Note that y∈T�x


since T is closed. From condition (ii), we conclude f �x	y	u
∈�−IntC
c and
x∈S�u
.

For any finite set A=�x1	���	xn�⊂co�E
, we write any x∈co�A
 as

x=
n∑

j=1

tjxj with tj �0 and
n∑

j=1

tj =1.

Since f is vector 0-diagonally convex with respect to T , there exists y∈T�x


such that
n∑

j=1

tjf �x	y	xj
∈�−IntC
c. Then f �x	y	xj
∈�−IntC
c for some j

with 1�j�n, and x∈S�xj
. This proves that co�A
⊂
n⋃

j=1

S�xj
. Therefore,
⋂

u∈co�E


S�u
 
=∅.

LEMMA 3.3. Let X and Y be real Hausdorff topological vector spaces, let K⊂
X be nonempty and convex, and let D⊂Y be nonempty. Let T �K−→2D be a
multi-valued mapping, and let f �K×D×K−→� be a trifunction. Let E be
any nonempty finite subset ofK. Assume that the following conditions are satisfied.

(i) T is upper semicontinuous, and T�x
 is nonempty convex for every x∈K.

(ii) For every x∈K, there exists y∈T�x
 such that f �x	y	x
=0.

(iii) For each �x	y
∈K×D, the function u �−→f �x	y	u
 is C-convex.

(iv) For each �x	u
∈K×K, the function y �→f �x	y	u
 is C-concave.

(v) For every fixed u∈K, the bifunction �x	y
 �−→f �x	y	u
 is C-upper
semicontinuous on co�E
×D.

Then there is a pair �x̂	ŷ
∈co�E
×T�x̂
 such that f �x̂	ŷ	u
∈�−IntC
c for
all u∈co�E
.
Proof. First, note that f is vector 0-diagonally convex with respect to T , (See

Remark 2.1 (ii).). By Lemma 3.2, there is an x̂∈co�E
 such that for every fixed
u∈co�E
 there exists yu∈T�x̂
 with f �x̂	yu	u
∈�−IntC
c.
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To use the scalarization method, let ��y	u
=(�f �x̂	y	u

 for �y	u
∈D×
K. From Proposition 2.3, and conditions (iii), (iv) as well as (v), we know that

(a) for every u∈K, the function y �−→��y	u
 is upper semicontinuous and
concave, and

(b) for every y∈D, the function u �−→��y	u
 is convex.

Since for every u∈co�E
,

max
y∈T�x̂


��y	u
���yu	u
=(�f �x̂	yu	u

�0	

by Proposition 2.4, there exists ŷ∈T�x̂
 such that ��ŷ	u
�0 for all u∈co�E
.
Therefore, f �x̂	ŷ	u
∈�−IntC
c for all u∈co�E
.

Proof of Theorem 3.2. First, we assume thatK is compact. Let� be the family
of all nonempty finite subsets of K. For every E∈� , let

ME =�x∈K � there exists y∈T�x
such that

f �x	y	u
∈�−IntC
cfor allu∈co�E
��

It follows from Lemma 3.3 that ME 
=∅ for all E∈� . Now, by the same
reasoning as that in the proof of Theorem 3.1, we obtain

⋂
E∈�

ME 
=∅.

Let x̂∈ ⋂
E∈�

ME . For u∈K, consider the set E=�u	x̂�. Since x̂∈MEu
, there

is a net �x�� in MEu
such that x�→ x̂, and there exists y�∈T�x�
 such that

f �x�	y�	tu+�1−t
x̂
∈�−IntC
c for all 0� t�1.

By condition (vi), there exists ŷu∈T�x̂
 such that f �x̂	ŷu	u
∈�−IntC
c. This
proves the theorem for the case where K is compact.

Now, we complete the proof of the theorem as follows. For every u∈K, let

S�u
=�x∈K0 � there exists yu∈T�x
 such that f �x	yu	u
∈�−IntC
c��

We shall prove that every S�u
 is nonempty, and that the family �S�u
�u∈K has the
finite intersection property.

For any finite set �u1	���	un�⊂K, we consider the set B=co�K1∪�u1	���	un�
.
SinceK1 is compact and convex, B is compact. (See Bourbaki, 1996, Theorem 15,
II.14.) By what has been proved above, there exists x̃∈B such that for every fixed
u∈B there exists ỹu∈T�x̃
 such that f �x̃	ỹu	u
∈�−IntC
c. Since K1⊂B,
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x̃∈K0 by the condition (vii). Thus x̃∈
n⋂

j=1

S�uj
. Therefore, S�u
 is nonempty

for every u∈K, and the family �S�u
�u∈K has the finite intersection property.

It is not difficult to see that S�u
 is closed for each u∈K. As K0 is compact,
we have

⋂
u∈K

S�u
 
=∅ and each x̂∈⋂
u∈K

S�u
 is a weak solution of (GVEP). The

proof is now complete.

Proof of Theorem 3.3. We shall prove the theorem by use of the scalarization
procedure, and consider the function ��x	y	u
=(�f �x	y	u

. From Proposi-
tion 2.3 and conditions (iii), (v) as well as (vii), we know that

(a) for every �x	y
 the function u �−→��x	y	u
 is convex, and
(b) for every �x	u
 the function y �−→��x	y	u
 is concave and upper semicon-

tinuous.

By Theorem 3.2 and Remark 2.1 (ii), there exists x̂∈K such that for each u∈
K there exists ŷu∈T�x̂
 with f �x̂	ŷu	u
∈�−IntC
c. Thus max

y∈T�x̂

��x̂	y	u
�0

for all u∈K.

Now, we consider the function p�y	u
=��x̂	y	u
 for �y	u
∈T�x̂
×K.
Since T�x̂
 is convex and compact, and since K is convex, then by Proposition
2.4, there exists ŷ∈T�x̂
 such that ��x̂	ŷ	u
�0 for all u∈K. The proof is
complete.

4. The Classes SPM and GPM

In this section, we shall introduce two classes of vector-valued trifunctions which
generalize the notion of topological pseudomonotonicity for real functions intro-
duced by Brézis (1968) and Browder (1976).

We start with the definition of superior and inferior of a subset of �. For a set
A⊂�, the superior SupA and the inferior InfA of A are defined by

SupA=�z∈A �A∩�z+IntC
=∅�

and

InfA=�z∈A �A∩�z−IntC
=∅�	
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respectively. It follows immediately from the definition that SupA=SupA and
InfA= InfA.

If �z���∈I is a net in �, then we define the limit inferior and limit superior of
�z�� by

Liminfz�=Sup�
⋃
�∈I

InfA�
 and Limsupz�= Inf�
⋃
�∈I

SupA�
	

where A�=�z� � ���� for every �∈ I .

Let X and Y be two Hausdorff topological spaces, let f � X×Y ×X−→�
be a trifunction, and let T �X−→2Y be a multi-valued mapping.

(1) f is said to be of class (SPM) if for everyw∈ IntC and for each net ��x�	y�
��∈I

in X×Y satisfying

�x�	y�
→�x	y
∈X×Y and Liminff �x�	y�	x
∩�−IntC
=∅	

there is an �0∈ I such that

�f �x�	y�	u
 � ����⊂f �x	y	u
+w−IntC

for all ���0 and for all u∈X.
Consequently, Sup�f �x�	y�	u
 � � � �� ⊂ f �x	y	u
 + w − IntC for
all ���0 and for all u∈X.

(2) f is said to be of class (GPM) with respect to T if it posseses the following
property. For every w∈ IntC and for each net ��x�	y�
��∈I in X×Y with
y�∈T�x�
 and x�→x∈X, if there exists 20∈ I such that

�f �x�	y�	x
 �����∩�−w−IntC
=∅ for all ��20,

then there exists �0∈ I such that for each u∈X there exists yu∈T�x
 with

�f �x�	y�	u
 �����⊂f �x	yu	u
−w−IntC for all ���0.

REMARK 4.1. Let K be a closed convex subset of a reflexive Banach space B.
A multi-valued mapping T �K−→2B∗

is called pseudomonotone in the sense
of Browder (see Browder, 1976; Zeidler, 1985, p. 913) if it satisfies the following
condition.
For any sequence ��un	u

∗
n
�

�
n=1 in K×B∗ with u∗

n∈T�un
 for all integers
n�1, and with un ⇀u in 4�B	B∗
 as n→�, if

limsup
n→�

�u∗
n	un−u	�0	
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then for every x∈K, there exists u∗
x∈B∗ such that u∗

x∈T�x
 and

�u∗
x	u−x	� liminf

n→�
�u∗

n	un−x	�

It is easy to see that topological pseudomonotonicity of the multi-valued map-
ping T in the senseofBrowder implies that the trifunctionf definedby f �u	u∗	x
=
�u∗	x−u	 for �u	u∗	x
∈K×D×K is of class (GPM). Therefore, the above
definition represents an extension to a vector framework of the classical pseudo-
monotonicity notion introduced by Brézis and Browder.

THEOREM 4.1. Let X and Y be real Hausdorff topological vector spaces, letK⊂
X be nonempty convex, and let D⊂Y be nonempty closed. Let T �K−→2D be
a multi-valued mapping, and let f �K×D×K−→� be a trifunction. Assume
that the following conditions are satisfied.

(i) f �x	y	x
∈�−IntC
c for all x∈K and y∈T�x
.

(ii) f is of class (SPM).

(iii) T is upper semicontinuous, and T�x
 is nonempty and convex for every
x∈K.

(iv) For every y∈D, the bifunction �x	u
 �−→f �x	y	u
 is C-quasiconvex-
like (or vector 0-diagonally convex) on K×K.

(v) For every u∈K, the bifunction �x	y
 �−→f �x	y	u
 is C-upper semi-
continuous on co�E
×D for every nonempty finite set E⊂K.

(vi) (Coercivity) There is a nonempty compact set K0⊂K, and there is a
nonempty compact convex set K1⊂K such that

x∈K∩Kc
0 �⇒f �x	y	ux
∈−IntC

for some ux∈K1and for ally∈T�x
�

Then there exist x̂∈K and ŷ∈T�x̂
 such that f �x̂	 ŷ 	u
∈�−IntC
c for all
u∈K.

Theorem 4.1 follows immediately from Theorem 3.1 and the following result.

LEMMA 4.1. Let X and Y be real Hausdorff topological vector spaces, let K⊂X
be nonempty convex, and let D⊂Y be nonempty. Let f �K×D×K−→�
be a trifunction of class (SPM). If u∈K, and ��x�	y�
��∈I is a net in K×D
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converging to �x	y
∈K×D satisfying

f �x�	y�	 tu+�1−t
x
∈�−IntC
c

for all� ∈ Iand for all0� t�1	

then f �x	y	u
∈�−IntC
c.
Proof. For any u∈K and for any �∈ I , let

A��u
=�f �x�	y�	u
 � �����

By assumption, f �x�	y�	x
∈�−IntC
c and f �x�	y�	u
∈�−IntC
c for all
�∈ I . This implies that A��x
⊂�−IntC
c and A��u
⊂�−IntC
c for all �∈ I .
Note that

Liminff �x�	y�	x
∩�−IntC
=∅
since A��x
⊂�−IntC
c for all �∈ I .

Suppose that f �x	y	u
=−w for some w∈ IntC. Since f is of class (SPM),
there is an �0∈ I such that

���0�⇒A��u
⊂f �x	y	u
+w−IntC=−IntC�

This is a contradiction. Hence f �x	y	u
∈�−IntC
c.

COROLLARY 4.1. Let X and Y be real Hausdorff topological vector spaces, let
K⊂X be nonempty convex, and let D⊂Y be nonempty closed. Let T �K−→
2D be a multi-valued mapping, and let f �K×D×K−→� be a trifunction.
Assume that the following conditions are satisfied.

(i) f �x	y	x
�0 for all x∈K and y∈T�x
.

(ii) f is of class (SPM).

(iii) T is upper semicontinuous, and T�x
 is nonempty and convex for every
x∈K.

(iv) For every y∈D, the bifunction �x	u
 �−→f �x	y	u
 is 0-diagonally
convex on K×K.

(v) For every u∈K, the bifunction �x	y
 �−→f �x	y	u
 is upper semi-
continuous on co�E
×D for every nonempty finite set E⊂K.

(vi) (Coercivity) There is a nonempty compact set K0⊂K, and there is a
nonempty compact convex set K1⊂K such that

x∈K∩Kc
0 �⇒f �x	y	ux
<0 for some ux∈K1 and for all y∈T�x
.
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Then there exist x̂∈K and ŷ∈T�x̂
 such that

f �x̂	 ŷ 	u
�0 for all u∈K. (1)

We note that if the function f given above is continuous on K×D×K,
then conditions (ii) and (v) are automatically satisfied. We remark that most of
the results in the literature concerning the existence of the problem (1) require
the continuity of the function f and of course some other conditions which are
different from the corresponding conditions of Corollary 4.1. See, e.g., Yao (1991)
Theorem 3.1 and Cubiotti and Yao (1997) Corollary 3.6 for corresponding results
in quasi-case.
In preparation of an existence result for a problem of class (GPM), we show:

LEMMA 4.2. Let X and Y be real Hausdorff topological vector spaces, let K⊂X
be nonempty and convex, let D⊂Y be nonemtpy, let T �K−→2D be a multi-
valued mapping, and let f �K×D×K−→� be a trifunction of class (GPM) with
respect to T . If u∈K, and ��x�	y�
��∈I is a net in K×D satisfying y�∈T�x�
,
x�→x∈K, and

f �x�	y�	tu+�1−t
x
∈�−IntC
c for all �∈ I and for all 0� t�1,

then there exists yu∈T�x
 such that f �x	yu	u
∈�−IntC
c.
Proof. For every u∈K and for every �∈ I , let A��u
 be given as in the proof

of Lemma 4.1. Note that A��u
⊂�−IntC
c and A��x
⊂�−IntC
c for all �∈ I .

Suppose to the contrary that f �x	y	u
∈�−IntC
 for all y∈T�x
. Let w∈
IntC be arbitrary. Since A��x
⊂�−IntC
c⊂�−w−IntC
c, then A��x
∩�−w−
IntC
=∅. By the definition of the class of (GPM), there exists �0∈ I and yu∈
T�x
 such that

A��u
⊂f �x	yu	u
−w−IntC⊂�−IntC
 for all ���0,

which is a contradiction. The proof is now complete. �

The following result is then a consequence of Theorem 3.3 and Lemma 4.2.

THEOREM 4.2. Let X and Y be real Hausdorff topological vector spaces. Let
D⊂Y be nonempty, and let K⊂X be nonempty and convex. Let T �K−→2D

be a multi-valued mapping, and let f �K×D×K−→� be a trifunction. Assume
that the following conditions are satisfied.

(i) T is upper semicontinuous, and T�x
 is nonempty and convex for every
x∈K.

(ii) f is of class (GPM) with respect to T .
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(iii) For every x∈K, there exists y∈T�x
 such that f �x	y	x
=0.

(iv) For each fixed u∈K, the bifunction �x	y
 �−→f �x	y	u
 is C-upper
semicontinuous on K×D.

(v) For every fixed �x	y
∈K×D, the function u �−→f �x	y	u
 is C-convex.

(vi) For every fixed �x	u
∈K×K, the function y �−→f �x	y	u
 is C-upper
semicontinuous and C-concave.

(vii) There is a nonempty compact set K0⊂K, and there is a nonempty com-
pact convex set K1⊂K such that if x∈K∩Kc

0 , then f �x	y	ux
∈�−IntC

for some ux∈K1 and all y∈T�x
.

Then there exist x̂∈K and ŷ∈T�x̂
 such that f �x̂	ŷ	u
∈�−IntC
c for all
u∈K.

In Theorem 4.2, if Z=� and C=�+, then we obtain the following existence
result for scalar generalized equilibrium problem, from which we can deduce and
extend some results on existence of solutions for scalar variational inequalities
associated with pseudomonotone multi-valued operators in the sense of Browder.

THEOREM 4.3. Let X and Y be real Hausdorff topological vector spaces. Let
D⊂Y be nonempty, and let K⊂X be nonempty and convex. Let T �K−→2D

be a multi-valued mapping, and let f �K×D×K−→� be a trifunction. Assume
that the following conditions are satisfied.

(i) T is upper semicontinuous on K, and T�x
 is nonempty and convex for
every x∈K.

(ii) f is of class (GPM) with respect to T .

(iii) For every x∈K, there exists y∈T�x
 such that f �x	y	x
=0.

(iv) For every fixed u∈K, the bifunction �x	y
 �−→f �x	y	u
 is C-upper
semicontinuous on K×D.

(v) For every fixed �x	y
∈K×D, the function u �−→f �x	y	u
 is C-convex.

(vi) For every fixed �x	u
∈K×K, the function y �−→f �x	y	u
 is C-upper
semicontinuous and C-concave.
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(vii) There is a nonempty compact set K0⊂K, and there is a nonempty
compact convex set K1⊂K such that

x∈K∩Kc
0 �⇒f �x	y	ux
<0 for some ux∈K1 and all y∈T�x
.

Then there exist x̂∈K and ŷ∈T x̂
 such that f �x̂	ŷ	u
�0 for all u∈K.
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